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EVOLUTION OF THE INHOMOGENEOUS STATE OF A FLUIDIZED BED 

Y~. A. Buevich and I. M. Tsyrul'nikov UDC 532.546 

The article examines the change of the characteristics of the dilute and dense 
phases over the height of a fluidized bed, caused by the regular gas exchange be- 
tween them and by the process of bubble coalescence. 

The intensity.of exchange processes in apparatus with a fluidized bed is largely deter- 
mined by the local hydrodynamic state in the given section of the bed; the local values of 
the hydrodynamic parameters may substantially differ from the respective mean values for the 
bed as a whole. It is therefore indispensable to have hydrodynamic models of fluidization 
which would make it possible to describe the dependence of such parameters at different points 
of the bed on the physical characteristics of the particles and of the gas as well as on the 
type of apparatus and the regime parameters of the process. 

The existing approximate models are of an empirical nature and do not meet this require- 
ment. Within the framework of the two-phase theory of fluidization [i], the bed is regarded 
as a spatially homogeneous system. The "bubble" models of fluidization, which came into use 
in connection with the modeling of the longitudinal agitation in the bed [2, 3], are also 
based on the ideas of the two-phase theory, and differences in the state of the bed at dif- 
ferent levels above the distributor grid are viewed as the consequences of bubble coalescence 
of the dilute phase; the properties of the dense phase are then taken to be homogeneous. 

The principal relationship U~U,+~Ub of the two-phase theory was already criticized by 
Turner [4], and deviations from it were experimentally confirmed by Pyle and Harrison [5] and 
in subsequent works. Attempts to modify this theory by taking into account the relative gas 
stream though the bubbles while maintaining the principal assumption u d =u, (so that u = 
U,(I+m~)+~Ub , where m is a parameter), begun by Grace and Clift [6], were unsuccessful, as 
was demonstrated by Davidson and Harrison [7]. Investigations in which the inadequacy of the 
two-phase theory was explained by pointing out that in reality u d > u, [8, 9] permitted a num- 
ber of empirical conclusions but they did not lead to the establishment of dependences of a 
sufficiently general nature. 

The main circumstance determining the difference between the filtration rate in the 
dense phase and the speed of minimum fluidization is the difference between the "initial" in- 
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homogeneous state directly above the grid and the state satisfying the requirements of the 
two-phase theory. If the bubbles form as a result of the collapse of the elementary gas 
streams flowing from nozzles or perforated holes, about 40-50% of the gas is ejected from 
the flares to the dense phase [i0, ii]. An analogous conclusion follows from [5, 8, 9] and 
other works. With uniform distribution of the gas through the porous grid, the porosity of 
the dense phase in the initial inhomogeneous state also exceeds the value characterizing the 
immovable bed [12]. 

The principal factor, which, together with bubble coalescence, causes a change of the 
characteristics of the inhomogeneous bed with height, is the specifid dynamic instability of 
the bubbles: large bubbles grow on account of the inflow of gas from the dense phase into 
them [13, 14], small bubbles become smaller and may even completely disappear [15]. A 
theory of this phenomenon~ neglecting the tangential stresses in the disperse phase, was 
suggested by Buyevich [16]. Of interest is the devising of a mathematical model describing 
the effect of such gas exchange between the disperse and the dense phases on the evolution of 
the state of the bed, and also its investigation for the purpose of answering the question 
whether a limit steady state exists, and if it exists, how quickly it is attained. The solu- 
tion of this problem is also the subject of the present work. 

Models of Bubbles and of the Dense Phase. Assuming that the hydraulic resistance is 
linear with respect to the filtration speed of the gas in the dense phase, we have [12] 

1 ~ ~g (2a) 2 d~ 
ud = -f[ I -- ~ --W-- ' ~ = -~o ~ I" (i) 

According to the formulas of Karman--Cozeni and Ergan, kz = 180 or 150; the value u, is ob- 
tained from (i) for e d = s,. 

For the steady-state ascending velocity of a bubble with the radius R of the head we 
use the formula that is also correct for x~ I: 

Ub = k2 (2gR) 1/2 (1 -]- =~). (2) 

According to the Davis-Taylor theory, ka = 0.711; the factor 1 + ~ was introduced in order 
to take into account the influence of the collective effects on the velocity u b [12]. 

Assuming that the shape of the growing bubble is retained, we see that R can depend 
only on h, its value of Ro for h = 0, the acceleration g, and on the value of Ud--U , which 
unambiguously characterizes the state of the dense phase when x )) I . According to the theory 
of dimensionalities, R~h~(x, y), where x = (Ud--U,)a/gh, y = Ro/h. At a distance Ro ~ h from 
the grid, we also have y~0. When u d = u,, the bubbles do not grow, therefore r 0) = x m, 
and from [16], we have m = 1/3. Thus, 

R = k3 (u~-- u,)2/3g-~/3h2/~. (3) 
Tamarin et al. [13~ empirically obtained that m = 1/3, Rowe [14] gives m = 3/4. It we dis- 
regard that in [13] u--u, is used incorrectly instead of Ud--U , for correlating the experimen- 
tal data (obviously, u§ d when ~§ we can obtain from the result of [13] that k = 0.93. 
Here we examine the coefficients ~ , ka, and k ~ in the general form as magnitudes needing 
further refinement. 

Taking it that the volume of a bubble is V = (4~/3)R3(l--f), where f is part of the sphere 
with radius R occupied by the wake zone, we obtain from (3) 

dV c ud--U*v~/2,  c = 2  - -  k~/2. 
dh ( 1  - -  f)~/2 g~/2 (4) 

If the particles in the wake zones of the bubbles were on the average immovable, the 
condition of retaining the gas volume would lead to the equation 

u = (1 + 2~) ua + ~Ub. (5)  

(This version is sometimes being disputed [3]; a strict derivation of (5) is contained in 
[12].) In reality the particles in wake zones move upward together with the bubbles, and 
this leads to the appearance of a downward stream of particles in the dense phase. If the 
mean speed of such a stream is equal to Us, then the gas speed in the gaps between the par- 
ticles of the dense phase is Ud/ed--Us, and the ascending velocity of the bubbles in the 
laboratory system of coordinates is Ub--Us, i.e., instead of (5) we have to write 
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u = (1 -6 29)(Ua--eaus ) -{- 9(uu--us). (6) 

The full volumetric upward flow of particles, due to their ascent with the bubbles, is 
equal to (1--ed)(Ub--Us)g:(1--[) -l (it was taken that the porosity of the wake zones approxi- 
mately coincides with ed, and we took into account the difference between the volumetric 
concentrations 9 of the dilute phase and 9(|--[)-Iof the spheres with radius R which include 
both the bubbles and their wake zones). The downward volumetric flow of particles in the 
dense phase is obviously equal to (l--ed) Us[l--9(l--[)--1]. If we equate these flows, we obtain 

[9 
U 8 ~ U b. 

( I - - f ) ( 1 - - 9 )  (7) 

Hence it can be seen that when Ub>> Ud, the gas motion in the dense phase may be "reversed" 
when its absolute velocity is directed downward. In beds containing a sufficient amount of 
large bubbles, this phenomenon was observed experimentally [3]. 

We will evaluate the coefficient u in (2), and for that we use, like in [12], the empiri- 
cal relationship [17]: 

u b  = u - -  u d  + Ubo, (8) 

where Ubo is the ascending velocity of a single bubble, approximately correct for u d ~ u b. 
Taking formulas (6) and (7) into account, we obtain from (8) that 

O 1 -- f -- 9 -- ear (1 -6 29) 
1 - - 9 G '  (1 - - : ) (1  --9) (9) 

which replaces the equality a = 1 corresponding to f-> 0 that was used in [12]. We want to 
emphasize that the considerations leading to formula (9) are heuristic, and the formula 
should therefore be accepted with some reservations. As long as a strict theory of con- 
strained bubble motion in a fluidized bed has not been worked out, the use of (2) with the 
coefficients ~ from (9) does not yield any basic advantages over the use of relationship (8) 
which was viewed as an experimental fact. 

Evolution of the Phases of the Bed with Bubble Coalescence Disregarded. Directly above 
the distributor grid the initial state forms which is characterized by the concentration no 
and volume Vo of the bubbles (9~=n0V0) and the initial porosity of the dense phase edo which 
are henceforth treated as specified. When elementary gas filament bands flow into the bed, 
these magnitudes can be evalUated on the basis of the results of [I0, ii], in outflow through 
a porous grid they can be evaluated with the aid of the theory in [12]. The dependence of 9, 
V, and e d on the height h in the bed has to be found. 

At first we disregard the bubble coalescence, when n = no = const. Then the equation 
= nV can be easily obtained from (4):. 

d9 cu, (_~_)1/2 ( u ,~1)  9~/t 
d h  (1 - -  : )1 /?  u ,  (lO) 

To make this equation fully determinate, the ratio Ud/U , has to be expressed via the physical 
and regime parameters of the bed. First of all we obtain from (i) that 

and from (6)-(9) 

Ud __(e__/~ ) a 1--e______~, 
u. ~ ,  / i - - ~  

after a number Of transformations we have 

(ii) 

ud 
it, 

where we introduce the function 

1 - 6 9 ( - - 2 - 6 F )  u 9 ( 2 - - F )  Ub0 
p 

1 -6 9F u, 1 -6 9F u,  (12)  

which becomes equal to unity when f = O. 
correlation between e d and 9; 

F= 1 + [ ea(I+29)+9 
l -- : I--9 ' (13) 

If we equate (ii) and (12), we obtain the algebraic 
this same correlation has to exist between edo and 90. 
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E, 
Ubo/U, 

Ubo/U, = B@ I~, 

where the following parameters are introduced: 

B 1 - - %  1.11 kik~(1 __[)-1/6 g (2a)a 
- -  " ~ , A r - - •  

e, 3 [• [8a3no]l/6 ~2 

If we introduce the dimensionless vertical coordinate ~ = h/H, where 

Fig. i. Dependence of the volumetric concentration 
of the dilute phase on the dimensionless height in 
the bed without coalescence for N = 2, 4 (solid and 
dashed curves, respectively) and different B (num- 
bers next to the curves). 

Fig. 2. Illustration to the determination of the 
porosity of the dense phase. The solid and dashed 
curves correspond to N = 2 and 4, respectively, the 
numbers next to the curves give the values of the 
parameter B~ The arrows indicate the sequence of 
determining e d from the specified ~; it is accepted 
that e, = 0.40. 

We transform (12), taking it that R = 0.62(l--f)-~/3V ~/3, and also formulas 
and (2) for a = 0. 

t 

(i) for ~d = 
After determining the fluidization number u/u, = N, we obtain for 

(14) 

(15) 

H 1 [( l__f)  g Jl/2__ ki l - - e ,  2a(1-- f ) l /2  
cu, no c e 3. [• ' (16) 

we o b t a i n  from (10) ,  (12) ,  and (14) the  equa t i on  ( the  magnitude e d i s  c o n s i d e r e d  an i m p l i c i t  
function of ~) 

d ~ =  [ l + q ~ ( - - 2 + F )  N- -Bqy /6 (2 - -F )  1 ] @ / <  
d~ [ 1 -6 q~F 1 + q~F j (17) 

In the special but very important case, when the downward motion of the particles of 
the dense phase with speed u s may be neglected (e.g., for f ~0 or ~ ~ 0), Eq. (17) is 
simplified : 

~7/6 ] 
d~ = 1 - - ~  N - - B - -  1 ~1/2. 
dE l d-~ 1 + ~  (18) 

In t h i s  case ,  the  n a t u r e  of  the  change of  ~ and e d over  the  he igh t  of  the  bed i s  de termined 
practically by the value of only two parameters: the complexes ~Ar and 8aano on which B and 
H depend, and by the principal regime parameter, the fluidization number N. The integral 
curves of Eq. (18) for different N and B are presented in Fig. i. If ~ I,,B~I, we have 
approximately 

~ [ ~ / ~  + ( N  - -  1) ~212.  ( 1 9 )  
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The values of porosity e d are determined from the equation 

9 7/6 ( ed 13 1--8  , 1 - - 9  N - - B =  - -  
I + W  1 + ~  \ e ,  / l - - c a  ( 2 0 )  

which follows from the formulas given previously. At the same time Fig. 2 shows the de- 
pendences of the right-hand side of this equation on c d for ~, = 0.40 and of the left-hand 
side on ~ for different N and B; these curves make it possible with the aid of the curves in 
Fig. i to plot the dependences of ed on ~ for different N and B. When ~ § the boundary 
state becomes established, and the volumetric concentration ~ of the dilute phase in it 
satisfies Eq. (20) with the right-hand side equal to unity. The values of ~ are determined 
by the points of intersection of the curves in Fig. 2 with the axis of abscissas. The 
porosity of the dense phase in the boundary state is obviously equal to e,. 

The found dependences make it possible to calculate the values characterizing the hydro- 
dynamics and agitation at different levels of the bed. Examples are the break-through fre- 
quency of bubbles at the given point of the bed or the part of the time during which this 
point is situated within the dilute phase, which are important for calculating external heat 
exchange (see, e.g., [18]), and also characteristics of the small-scale pseudoturbulent mo- 
tion of particles and gas, e.g., the coefficients of pseudoturbulent diffusion of particles 
whose dependence on e d was examined in [19]. 

It is also easy to carry out numerical calculations for the case when the initial par- 
ticle motion cannot be neglected. In this case we have to use, instead of Eq. (18), Eq. 
(17) which depends on the additional parameter f that is part of the determination of the 
magnitude F figuring in (17). 

Effect of Coalescence. In real fluidized beds, a very important process is the coales- 
cence of bubbles forming a larger bubble. Coalescence entails (even on condition that the 
full volume of the dilute phase is retained) a reduction of the area of the interface between 
the dilute and the dense phases, and consequently it reduces the rate of increase of the 
volumetric concentration of the dilute phase on account of the inflow of gas into it when 
compared with an analogous system without coalescence. 

First we will examine a single act of coalescence, the merging of two separately taken 
bubbles. Formally we may take it that at some level the bubbles with size R('~) with the full 
concentration ~ (1)coalesce in pairs forming half the number of bubbles of size R(2) with the 
concentration ~(2). The process of coalescence lasts only a fraction of a second, and it is 
natural to assume that within such a short time the state of the dense phase does not change, 
i.e,, the magnitudes ed and u d retain their values. Then we obtain from Eq. (12)that 

11 - -  ~(0 (2 - -  F(0)] N - -  ~(o(2 - -  F(i)) (u~/u,) const, 
1 + ~(OF(O (21) 

where the funct$oos F(i) are determined by the relationships analogous to (13), and ~he ex- 
pressions for u~J/uj follow from (14). Obviously, we must take it that n~ :) = 2n~ 2), i.e., 
where B(I) = elY~B(2~, where B is determined in (15). If we disregard the existence of wake 
zones (i.e., with f ~0, as was also assumed in deriving (18)), we obtain from (21) that 

N (1 - -  ~(0)-- B(O~(07/6 : c o n s t .  
1 Jr ~(i) (22)  

The coefficient of retention,of the volume upon coalescence ? = 9(2)I~< 1) increases monotonically 
from its limit value Y = 2 -t17 for N ~ B to unity in the opposite limit case. It is there- 
fore permissible to neglect the small gas losses upon coalescence and to take it that Y ~i. 
The change of 9 upon coalescence was experimentally investigated in [20]. 

The mechanisms of coalescence, ultimately determining the frequency distribution of these 
processes throughout the bulk of the bed, are very variegated, and their analysis is beyond 
the scope of this article. Here we will point out only two boundary situations which have 
to be investigated by different methods. When the bubbles form randomly in the zone adjacent 
to the grid and consequently their spatial distribution is also random, the principal mech- 
anism is the capture of smaller bubbles in the wake zone of a larger rising bubble and its 
subsequent absorption. Such a mechanism is considered most characteristic, and it is de- 
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Fig. 3. Dependence of ~ on ~ in random coalescence 

for N = 2, B = 1 and different B (numbers next to the curves). 

Fig. 4. Dependence of ~: on E with ordered coalescence 
for N = 2, B = i. To the two successive levels of coales- 
cence correspond values of E equal to 0.40 and 0.80. The 
dashed curves show the evolution of ~ as it would be if 
there were no coalescence at separate levels. 

scribed in [2, 3, 17]. It has to be put into effect when the gas is introduced through the 
prorous grid and the formation of bubbles is spontaneous [12], or through nozzles or per- 
forated holes if there is incoherent separation of the initial bubbles from the adjacent 
elementary filament bands. To devise a theory of coalescence we need in this case a complex 
statistical analysis of the spatial distribution of the bubbles and of the acts of coales- 
cence taking into account their kinematic and dynamic properties. At present it is apparent- 
ly convenient to use the empirical formula [2] 

n = n 0 e x p ( - - ~ ' h ) = n 0 e x p ( - - ~ ) ,  ~ = H ~ ' ,  (23) 

where u s u a l l y  B' ~ 100 cm -~  . I n  t he  g e n e r a l  c a s e ,  n r e p r e s e n t s  a d i s c o n t i n u o u s  f u n c t i o n :  to  
each a c t  o f  c o a l e s c e n c e  c o r r e s p o n d s  i t s  jump in  t he  v a l u e  o f  n,  and be tween  s u c c e s s i v e  a c t s ,  
n does  n o t  change .  T h e r e f o r e ,  (23) has to  be r e g a r d e d  as some c o n t i n u o u s  a p p r o x i m a t i o n  o f  
the  t r u e  f u n c t i o n  of  t h e  n u m e r i c a l  c o n c e n t r a t i o n  o f  t h e  b u b b l e s .  

The m a g n i t u d e  V i s  a l s o  d i s c o n t i n u o u s  f o r  each  b u b b l e ,  and in  t h e  i n t e r v a l s  be tween  t he  
a c t s  o f  c o a l e s c e n c e  i t s  change  i s  g o v e r n e d  by Eq. ( 4 ) .  T h e r e f o r e  f o r  t he  m a g n i t u d e s  ~ = nV 
we may w r i t e  d~/dh=@i~O~, where  ~ i s  d e t e r m i n e d  by t he  jumps ,  and r by t h e  c o n t i n u o u s  
g rowth  o f  t he  b u b b l e s  on a c c o u n t  o f  t h e  i n f l o w  o f  g a s  d u r i n g  t h e  i n t e r v a l s  be tween  t he  jumps .  
When y = 1, which  we assume on t h e  b a s i s  o f  what  was s a i d  above ,  we have  ~ = 0 and ~2 = ndV/ 
dh and dV/dh and n a r e  d e s c r i b e d  by f o r m u l a s  (4) and ( 2 3 ) .  In  t h i s  c a s e  t h e r e f o r e ,  i n s t e a d  
o f  ( 1 8 ) ,  we o b t a i n  t he  e q u a t i o n  

d~ 1 - -  ~ N - - B - -  exp - -  1 exp - -  
d~ 1 ~-  ~ 1 ~-  ~ 8 -  2 -  ' ( 2 4 )  

where  B and ~ a r e ,  a s  b e f o r e ,  d e t e r m i n e d  in  (15) and ( 1 6 ) .  Thus,  when random c o a l e s c e n c e  i s  
t a k e n  i n t o  a c c o u n t ,  a n o t h e r  p a r a m e t e r ,  v i z . ,  B, a f f e c t i n g  e v o l u t i o n ,  a p p e a r s .  The i n t e g r a l  
c u r v e s  Of Eq. (24) f o r  d i f f e r e n t  B a r e  shown i n  F i g .  3. I t  can  be seen  t h a t  c o a l e s c e n c e  
greatly retards the increase of ~ with increasing height and attainment of the limit state. 

The second limit situation is encountered with coherent bubble formation above adjacent 
nozzles or holes. In this case there are horizontal layers of parallelly rising bubbles 
'~ith equal rights," and pairwise coalescence at some level occurs as a result of the "lateral" 
merger of adjacent bubbles after these bubbles have grown to such an extent that the regions 
of closed circulation surrounding them merge [21]. As a result, a new ordered horizontal 
layer of bubbles forms in which the bubbles simultaneously coalesce at a new and higher level, 
etc. Sometimes such layers form initially upon disintegration of the horizontal cavities 
which form above the distributor on account of the merger of the elementary gas filament 
bands [22]. Various random factors may infringe such an ordered pattern because somewhere 
high above the grid a random regime arises. 
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In this situation, the equation governing the evolution of the dilute phase in the in- 
terval between the (i--l)-st and the i-th coalescence levels has the form (again we use the 
simplifications leading to (18) and (24)) 

d~ ~ 1 - - ~  N - -  B 2(~-1)/6~/6 1 
dE 1 -+- ~ 1 -@ ~ 2(~=1)/2 " ( 2 5 )  

An ideal of the nature of the evolution can be obtained from Fig. 4 which shows the curves 
~(C) at the first three such intervals. It was arbitrarily accepted that to the first two 
levels of coalescence correspond the values ~1,2 = 0.40 and 0.80. The curves in Fig. 4 con- 
firm the previously made conclusion that coalescence retards the rate of evolution. 

In conclusion, we will show that in real, horizontally bounded beds, coalescence leads 
to a loss of bubbles in the regions near the walls, as was observed in [23], and to the 
transformation of the initial profile of gas speed, first into a profile with several maxi- 
ma, and then into a profile with a single maximum near the axis of the apparatus [24]. This 
is directly related to the shedding of light on the mechanisms determining the scale effect, 
and it therefore deserves independent examination. 

NOTATION 

a, particle radius; B, parameter defined in [15]; c, numerical coefficient in (4); do, 
density of the continuous phase; d| density of the disperse phase; F, G, functions defined 
in (9) and (13), respectively; f, part of the volume of the sphere with radius R occupied by 
the wake zone of the bubble; g, acceleration of gravity; H, scale of length from (16); h, 
height in the bed; ki, coefficients in (1)-(3); N, fluidization number; n, numerical concen- 
tration of the bubbles; R, radius of the bubble head; Ub, speed of ascent of a cluster of 
bubbles; Ubo , speed of ascent of a single bubble; Ud, rate of filtration in the dense phase; 
Us, speed of descent of particles of the dense phase, u, total fluidization flow in the bed; 
V, volume of the bubble; ~, coefficient introduced in (2); 8, 8', constants of the coales- 
cence rate introduced in (23); Y, coefficient of conservation of volume with coalescence; Ed, 
porosity of the dense phase; ~, dimensionless height; %, dl/do; v, kinematic viscosity of 
the fluidizing medium; ~, volumetric concentration of the dilute phase; Ar, Archimedes num- 
ber. Subscripts: 0, initial state at the grid; *, state of minimum fluidization. 
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A SYSTEM OF HEAT--MASS-TRANSFER EQUATIONS FOR VAPOR 

FILTRATION IN DISPERSED MEDIA 

V. L. Ganzha and G. I. Zhuravskii UDC 532.546:547.912 

A system of heat--mass-transfer equations describing filtration of a vapor in dis- 
persed media is presented. The cases of "local thermal equilibrium" and tempera- 
ture difference between the filtering agent and medium particles are considered. 

Interest in the study of vapor filtration in dispersed media has increased recently. 
This is primarily due to the promise of vapor--fuel methods for increasing petroleum and gas 
output. 

To describe the filtration process, a number of studies have proposed use of the system 
of equations presented in [i], which is not a totally justifiable approach. That system was 
obtained on the basis of the following assumptions: the change in mass content of the medium 
was expressed by the formula 

dU,= ea,Mo (dP--  1 dT) + ePM~ dot; 
R T Z RT ( l )  

the  s a t u r a t i o n  of  the  medium by the  i - t h  component was assumed to change i n s i g n i f i c a n t l y ,  
i . e . ,  d~ i ~ 0 ;  the  f i l t e r i n g  vapor was r ega rded  as an i d e a l . g a s .  Thus, accord ing  to [2] ,  the 
f i l t r a t i o n  equa t ion  was l i n e a r i z e d ,  i . e . ,  

aP 
-- A div (grad P), (2) 

0, 
where 

A ( kp ea~(~p).  
cp~)b clo 

The total flux of the liquid component was defined as 

(3) 
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